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MULTIPLE SOLUTIONS FOR A FOURTH ORDER ELLIPTIC
EQUATION WITH HARDY TYPE POTENTIAL

NGUYEN THANH CHUNG

ABSTRACT. Consider the fourth order elliptic equation with Hardy type poten-
tial
|]

u = 0, %:0 on 0,

where Q ¢ RY (N > 5), is a bounded domain with smooth boundary 99, 0 € €,
v is the outward unit normal to 02, the weighted function a : 2 — R may change
sign, A, i are two parameters. Under suitable conditions on the nonlinearities, a
multiplicity result is given using a variant of the three critical point theorem by G.
Bonanno [3].

{ A’y = Lha(z)u+ \o(x)f(u) in Q,
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1. INTRODUCTION AND PRELIMINARIES

In this article, we are concerned with a class of fourth order elliptic equations
with Hardy type potential

A%y = pra(@)u+ g\ @,u)  in Q, 1)
u = 0, ‘g—:j =0 on 0, '

where Q C RY (N > 5) is a bounded domain with smooth boundary 99, 0 € Q,
v is the outward unit normal to J€2, A, u are two parameters, 0 < pu < p*, where

w_ (N(N=2)\%. . . o
p* = (—5—) is the best constant in the Hardy inequality i.e.

2 1
de < M*/Q|A902dx (1.2)

for all ¢ € C§°(Q), see [12].

We point out the fact that if g = 0, problem (1.1) has been intensively studied
in the last decades. In the papers [4, 5, 7, 9, 11], the authors studied the problems
of p-biharmonic type, in which p is a constant. The topic involving p(x)-biharmonic
type operators has been studied in recent years, see [1, 2].
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In the case p > 0, problem (1.1) has been studied in some papers, we refer to
[10, 12, 13]. In [12], Y. Yao et al. studied problem (1.1) in the special case a(z) = 1,

N

and g(\, z,u) = Af(x)u. They showed that if f € f, with

A

F={fi0 R s il ) = 0.5 € L@\ OD].

then for any 0 < p < p*, the problem admits a non-trivial solution in I/VO2 2(Q) In
[13], the authors studied the existence of a non-trivial solution of the problem in the
critical case:

ER

A2y — M‘u‘q_%u-i- |22y in Q, 13)
u = 0, %:0 on 012, .

where 2 < g < 2,(s) = Z%V::) <2, = ﬁ—lf N > 5,0 < s < 4. Very recently, Y.

)
Wang et al. [10] studied the problem

ER

A%y = NMU + Ab(z)|u|""?u  in R, (1.4)
u e WEHRN), N > 5, '

where 1 < r < 2, = %, N > 5 and 0 < b(z) € LIRYN) with ¢ = 2*217”
meas({b(x) > 0}) > 0. Using variational techniques, the authors showed the exis-
tence of infinitely many solutions of (1.4) under suitable conditions on the parameters
wand A.
In this paper, we consider the fourth order elliptic problem (1.1) in the case when
g\, xz,u) = Ab(z) f(u), i.e.,
{ A%y = ﬁa(m)u—l—)\b(:v)f(u) in , (1.5)

u = 0, % =0 on 0,
in which the function f : R — R is superlinear at zero and sublinear at infinity, the
weighted function a : 2 — R may change sign, i.e., there exists a positive constant

Ap > 0 such that
—Ag < a(z) < Ag for all x € Q, (1.6)

the function b € L>(€), b(z) > 0 for all x € €, there exists Ry > 0 such that

Ry < dist(0,09) and b, = inf b(x) > 0. (1.7)

|z]<Ro

In order to state the main result of this paper, we assume f : R — R is a
continuous function satisfying the following conditions:
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(f1) f is sublinear at infinity, i.e.,

1 — =0
[t|—oo T
(f2) f is superlinear at zero, i.e.,
t
lim —f( ) =0;
t—0 t

(f3) There exists tg € R, such that F(tg) > 0, where F(t) = f(f f(s)ds.

It should be noticed that the term |u|"~2u is not superlinear at zero if 1 < r < 2
and it is not sublinear at infinity if 2 < r < 2,(s) = 28{,\[:45), so the situation
introduced here is different from [10]. Moreover, by the presence of the functions a
and b, especially a may change sign in (), the obtained result in this work is better
than that of [6], eventually with the Laplace operator —A.

Let W02’2(Q) be the usual Sobolev space with respect to the norm |jull22 =
1

(fQ ]Au\%x) ’ . We denote by Sy the best constant in the embedding W02’2(Q) —
Li(Q).

Definition 1.1. A function u € WOQ’z(Q) is said to be a weak solution of problem
(1.5) if and only if

/Q Aulvdz — p /Q ‘rﬁ wodz — A /Q b(z) f (u)vdz = 0

for any v € W02’2(Q).

Theorem 1.2. Assume the hypotheses (1.6)-(1.7) and (f1)-(f3) are fulfilled, then
there exists @ > 0, such that for any 0 < u < [ there exist an open interval A C
[0,00) and a constant dg, such that for every A € A, problem (1.5) has at least two
non-trivial weak solutions in WOM(Q), whose W()Q’Q(Q)—norms are less than 6.

Theorem 1.2 will be proved by using a recent result on the existence of at least
three critical points by G. Bonanno [3]. For the reader’s convenience, we describe it
as follows.

Lemma 1.3. Let (X,|.||) be a separable and reflexive real Banach space, A, F :
X — R be two continuously Gateaux differentiable functionals. Assume that there
exists xg € X such that A(zo) = F(xo) =0, A(z) > 0 for all x € X and there exist
x1 € X, p> 0 such that
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(1) p < A(x1),
F(z1)

(i) Supga(z)<py F(2) < PA(zy)
Further, put

&p
ZEN)
Py — SUP{AG)<py T (@

and assume that the functional A— \F is sequentially weakly lower semicontinuous,
satisfies the Palais-Smale condition and

(idi) lim|g)|—oc[A(7) — AF ()] = +00 for every A € [0,a].

a= , with &€ > 1,

Then, there exist an open interval A C [0,a@] and a positive real number & such that
each X\ € A, the equation
DA(u) — ADF(u) =

has at least three solutions in X whose ||.||-norms are less than 0.
2. PROOF OF THE MAIN RESULT

For each ;1 € [0, %), and A € R, let us define the functional J, y : W02’2(Q) — R by

Tu(u) = 1/!A diﬂ-/Hz; uf*dz _A/b (2.1)
)

|
= A(u) = AF(u

where

-3 [ jaurar= [ Tl

(2.2)
Flu) = /Q 2)F(u)d,

for all u € WO2’2(Q). Then, by the Hardy inequality (1.2) and the hypothesis (f1),
we can show that J, ) is well-defined and of C ! class in Wg 2((2) Moreover, we have

DJ,\(u)(v) —/QAuAvd:):— /Wuvdx—AAb(m)f(u)vdm

for all v € I/VO2 2(€2). Thus, weak solutions of problem (1.5) are exactly the critical
points of the functional J, x.

Lemma 2.1 There exists it > 0, such that for each p € [0,71), and A € R, the
functional J,, ) is sequentially weakly lower semi-continuous in W02’2(Q).
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Proof. Let {um} be a sequence that converges weakly to u in VVO2 2(Q) Since —Ag <

*

a(z) £ Ag for all z € Q, taking 7 = f‘—o, then for each 0 < p < @, using the same
arguments as in the proof of [8, Theorem 3.2], we can obtain

S 2 a(x) 2 2 a(x) o
-y —7 > -y —7
hmmf/ (|A’U,m’ dr — 1 || )da: / <|Au! dz ,LL| A |ul )dw. (2.3)

m—oo |x
On the other hand, by (f1), there exists a constant C' > 0, such that
1f(t)] < C(1 + |t]), for all t € R.

Hence, using the the Holder inequality, we have
| / b)) F (1) — / b)) F(u)da

Q Q

< [ @) IF () = Fw)lds

< [bll (o) /Q [+ O — 0)) [t — ]

< Cllbllm(o) [ (1+ -+ Onitm = ), = ulda

%

< Clpll ooy | (meas(@))* + llu+ O (um — )l 2@y | ltom = ull 2y, O € (0,1),

which shows that
lim [ b(z)F(up)de = / b(x)F(u)dz. (2.4)

From relations (2.3) and (2.4), we conclude that

lminf Jy, ) (um) > o (u)

m—0o00

and thus, J, ) is sequentially weakly lower semi-continuous in WO2 2((2) O

Lemma 2.2. For each p € [0,1), where fi is given by Lemma 2.1 and X\ € R, the
functional J,, ) is coercive and satisfies the Palais-Smale condition.

Proof. Let us fix A € R, arbitrary. By (f1), there exists 6 = §(\) > 0, such that

Ao S% 1
f < — + .
|f ()] (1 " )1 ol ( )(1 IA) 77t for all |t| > ¢
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Integrating the above inequality we have

NAO 522 11412
Ft) <(1- 14+ |A t|* +max|f(s)||t| for all ¢t € R.

Hence, since — Ay < a(z) < Ay for all z € Q and (1.2), it follows from the continuous
embeddings and the Holder inequality that

1
Jux(u) :/ |Au\2daz—'u/ CL(T?]u\Qda:—)\/ b(x)F (u)dx
A u
> 5 [ =222 [ e ey [ P01
1 MAO / Al ,UAO 2/ 2
>—(1- Aul“dz — 1-— S, d
25 (1=50) Jy ot =g T (1= 5) 8 s
= N [¥lcey [ fulda
Q

1 pAg Al Loe () 1
_2(1+|>\|)<1 ol = g (meas(9) 2 ulzz

Since @ = ALO > 0, we deduce that for each p € [0,7z) and X € R, the functional J,, »
is coercive.
Next, let {u,,} be a sequence in WOZQ(Q), such that

Jua(tm) — ¢ < 0o and DJ, () — 0 in W2%(Q) as m — oo, (2.5)

where W~22(Q) is the dual space of W02’2(Q).

Since J, ) is coercive, the sequence {u,,} is bounded in I/VO2 2(9) Then, there
exist a subsequence of {u,,}, still denoted by {u,,}, that converges weakly to some
u € W02’2(Q) and {u,,} converges strongly to u in L?({2). We find that

2
H Uy, — U
(1 Yt~ s < = o = s [ 0™~
= DIy (um)(um — u +DJM( w) (U — Uy, (2.6)
+ )\/ b(x f(u)) (U, — u)dz.

Since {u,,} converges weakly to u in WOQ’z(Q), ||um — ul|2,2 is bounded. By (2.5), it
implies that

lim DJy(tm)(Um —u) =0, lim DJ, \(u)(u — ) = 0. (2.7)

m—00
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On the other hand, by the Hélder inequality,
| [ 3@ (Fam) = 1)) (i — ]
Q
< Cbllmo) /Q(z T ot + ]t — ulde (2.8)

1
< Cllbll sy |2 (meas()) * + llumllzz) + lullzz | lum = ullr2);

which approaches 0 as m — oo.
By (2.6), (2.7) and (2.8), the sequence {u,,} converges strongly to u in W02’2(Q)
and the functional J,, ) satisfies the Palais-Smale condition. ]

Lemma 2.3. For each p € [0, 1) we have

i SR Aw) <p} _
p—0F P

0,

where the functionals A and F are given by (2.2).

Proof. By (f2), for an arbitrary small € > 0, there exists § > 0, such that

S3

— 5 i forall |t <4,
L+ bl oo (o)

€ p
fi<s(1-£)
o< 5(1-4
where [z is defined by Lemma 2.1. Combining the above inequality with the fact
that

|lf(t)] < C(1+|t]) for all t € R

we get

F0<3(1-5)

S3 2
z 1£2 + Cylt[ (2.9)
K )

L+ |6l oo (02

for all t € R, where ¢ € (2, ]\%—JL), and Cs > 0 is a constant that does not depend

on t.
Next, for each p > 0, we define the sets

By ={ueWs?(Q): A <p}

and
gi={uewi@: (1-L)pig, <2}
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By (1.2), we have B! C B2. Moreover, using (2.9), it follows that for any u € B2,
p p P
€ 1 _
Flw) < 3(1= 2 )l + Cosy ullh (2.10)

Since 0 € Bj and 1(0) = 0, we have 0 < SUDye 1 I(u). On the other hand, if u € B2,
then

—1
2 1
lullaz < (1= £) % (20)2.
4
Now, using (2.10), we deduce that

< supyep1 F(u) - supyepz F(u)

p - P By (2.11)
€ _ W\ 2 7
< — q - .
<s+Gs(1 M) (20)%

Since g > 2, letting p — 07, because € > 0 is arbitrary, we get the conclusion. O

Proof of Theorem 1.2. In order to prove Theorem 1.2, we shall apply Lemma
1.3 by choosing X = W02’2(Q) as well as A and F as in (2.2). Now, we shall
check all assumptions of Lemma 1.3. Indeed, we have A(0) = F(0) = 0 and since
—Ap < a(x) < A for all z € Q, we deduce from (1.2) that for any pu < @z, A(u) >0
for any u € W02’2(Q).

Let tp € R as in (f3), i.e. F(tp) > 0. For o € (0, 1), we define the function u, by

0, for x € RN\ Bg,(0),
uy(z) = 1 o, for x € Byp,(0),
Y sin [7(1_2)1%0 (HT"RO - |x!>} + 4% for x € Bgy(0)\Bsr,(0),

where B,(0) denotes the N-dimensional open ball with center 0 and radius r > 0,
Ry is given by (1.7), and |.| denotes the usual Euclidean norm in RY. Since u, €
CHQ) N C?*(Q\{x € Bg,(0) : |z| = cRg and |z| = Rp}) and u, = |Vu,| = 0 for
all |z| > Ry we have u, € WO2’2(Q) and |ug ()] < |to| for all z € RY. From the
definition of u,, a simple computation shows that

Flus) = / b(x)F(u,)dx —i—/ b(x)F (uy)dx
BURO (0) BRO\BURO (0)
> [br F(to)o™ — ma [F(1)](1~ o)l oy | B o
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where wy is the volume of the unit ball B;(0). If we choose o € (0, 1) close enough
to 1, says og, then the right-hand side of the last inequality becomes strictly positive.
By Lemma 2.3, we can choose pg € (0, 1) such that py < A(us,) and

SUP A (u)<pyy F (1) § b, F (to)op — maxjy< g, |[F(8)[(1 = 00)V[[b]| oo o) | RY wiv
Po 2“4(“00)
-7:(“00)
< T 907
A(tgy)

Now, in Lemma 1.3, we choose xg =0, £1 = Ug,, £ =1+ pg and

L+ po
f(ugo) . SupA(u)<po—0 .7:(11,)
Alusy) 0

a=a, = > 0.

For any i € [0, ), taking into account the above lemmas, all assumptions of Lemma
1.3 are verified. Then there exist an open interval Az C [0, @] and a number 5, such
that for each A € Ay, the equation DA(u) —ADF(u) = 0 has at least three solutions
in W02’2(Q) whose W02’2(Q)—norms are less than 0z. By (f2), f(0) =0, one of them
may be the trivial one, so problem (1.5) has at least two non-trivial weak solutions
with the required properties. O
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